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We present a new method for the study of a one-dimensional inhomogeneous 
Ising chain with nonconstant nearest neighbor interactions. The external field 
required to produce a given magnetization profile is derived exactly. Some 
properties of the pair direct correlation function are derived. Our findings 
generalize previous results of Percus. 
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1. I N T R O D U C T I O N  

Increasing attention has been paid to the study of one-dimensional 
inhomogeneous Ising models in recent years. An exactly solvable one- 
dimensional model of an interface between coexisting phases was analyzed 
recently by Robert and Widom. ~1~ The model consisted of a one-dimen- 
sional Ising chain with constant nearest neighbor interactions in an exter- 
nal field that changed sign in the middle of the chain. Later, Robert and 
Viswanathan 121 calculated an exact expression of the pair distribution 
function of the above field-induced interface for finite and infinite chains. 
The pair direct correlation function was then obtained from a remarkable 
work of Percus, (3~ who expressed this function in terms of the 
magnetization profile. 

In another group of studies, exactly solvable one-dimensional 
inhomogeneous Ising models, i.e., inhomogeneous models for which the 
free energy can be exactly evaluated, have also been widely discussed 
recently. Allouche and Mend6s-France 141 studied the Ising chain with 
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variable interaction and constant external field at zero temperature. Men- 
d6s-France (5) gave an exact computation of the Ising chain with non- 
constant external field in terms of certain continued fractions. Derrida et 
a/./6) analyzed an Ising chain in a variable external field. Using a result of 
Weyl, {7/ they founded exact solutions from which they built the model. 
However, they claimed that the relationship between their point of view 
and that of Percus appeared to be too complicated to allow a direct com- 
parison between both methods. 

In this paper we present a new and exact method for the study of a 
one-dimensional Ising chain with nonconstant interactions in an 
inhomogeneous external field. Our findings generalize previous results of 
Percus. Some specific applications of our method to field-induced interfaces 
and exactly solvable models will be reported elsewhere. 

2. THE  M E T H O D  

We consider a one-dimensional Ising chain of N spins with non- 
constant nearest neighbor interactions in an inhomogeneous external field. 
The equilibrium statistical mechanics of the chain is determined by the par- 
tition function 

Zu(bl,...,bs;K 1 ..... K x _ , ) =  ~ exp b,,sn+ ~ K~s~sn+l (1) 
{s~} n 1 n ~ 1 

where b,, and Kn are dimensionless variables denoting, respectively, the 
external field acting on the nth spin and the interaction constant that 
couples s,, to s,,+l. As usual, the spin variables s,, assume either of the 
values + 1. 

As distinguished from Percus, 13) who decomposed (1) into right and 
left fragments, and Derrida et al., (6) who used transfer matrix techniques to 
derive a recurrence relation for the ratios Zn( + )/Zn(-), these being par- 
tition functions as defined in (1) with the extra conditions s, = _-t-1, we shall 
transform (1) in a different fashion. 

First, carry out in (1) the sum over the spin variable sN to obtain 

Eexp(bNSN+ KN-1SN-1SN)=2cosh(bN+ KN-1SN 1) 
SN 

where, in order to avoid cumbersome formulas, we detached the terms aN 
in (1). We now introduce the following notation: 

2cosh(bN+Ku_lS u x)=fN(bN, KN_l)exp(b*_lSN_l) (2) 
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This relation defines f N ( b N ,  KN ~) and b* ~, their analytical expressions 
being readily found by solving the algebraic equations obtained by setting 
SN_ ~= _+ 1 in (2). It follows at once that 

fN(bN, KN-1)=2coshl/2(bN+KN l)coshl/2(bN--Ku 1) (3a) 

exp(2b*_ i) = cosh(bN + KN l ) / c o s h ( b N  - K N 1) (3b) 

Equations (l) and (2) yield the identity 

ZN(bl ..... bu; K1 ..... K N _  I) 

=fN(b~v, KN l )ZN- l (b l  ..... bs. l+b*.  1;K1 ..... KN 2) (4) 

where the notation of (1) has been used. We note that ZN 1 is the par- 
tition function of an Ising chain of N--  1 spins with the same dimensionless 
variables b,, and Kn (n=  l,..., N - 2 )  appearing in (1) but with b x _  1 

replaced by bN_ 1 + b~v _ ~. 
The outlined procedure is then continued by summing over the spin 

variable SN ~ in ZN_. 1 and arranging the sum as in (2) to obtain the next 
identity 

ZN l(bl ..... bN ~+b*_ l ;K1  ..... KN_2) 

= . f N - l ( b ~  , + b * _ , , X ~ _ 2 ) Z ~  2(b, ..... b~ ~ + b ~  2;K1 ..... X~_3) 

wherefN_~ and b*_ 2 depend o n b  N_m+b* j and K N 2 in the same way 
a s f x  and b *  1 depend on bN and KN ~ [see (3a), (3b)]. 

The method is now straightforward. We proceed exactly as above, 
summing consecutively over SN-2, SN-3 ..... and s~, each time repeating the 
same steps leading from (1) to (4). We thus get the following exact result 
for the partition function: 

N 

z,~ = 1] f,,(b,, + b,,*, Kn_, ) (5) 
n - - I  

where 

f~(b.+b*,Kn ,) 

= 2coshl/2(bn+b,*+K,, ~)coshl/2(bn+b,*-K~__i) (6) 

and 

Ko=O; b~,--O (7) 
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The field variables b* appearing in (6) can be shown to satisfy the 
recurrence relation 

* K,,)/cosh(b, + b,*+ 1 - K,) (8a) exp(2b*) --- cosh(b, + 1 + bn+ 1 + + 1 

tanh b* = tanh(b, + 1 -~  b n  + 1 ) tanh K,, 

o r  

from which we readily obtain that 

a b * / a b , .  = o, 

#b*/3b,~= f i  
p = n +  1 

m <~n 

(x + - X p ) ,  m > n  

with x f  defined as 

(Sb) 

1 
x,~ = ~ tanh(b,  + b,* + K,, 

Their physical meaning will become clear later. 

(%) 

(9b) 

1) (10) 

3. A PHYSICAL INTERPRETATION 

The representation developed in Section 2 is, of course, entirely 
equivalent to the representation of Derrida et al. because both represen- 
tations correspond to exact transformations of (1). Indeed, from (5), (6), 
and (10) it is an easy matter to derive that 

1 ~ 4 
- ~ 4x,,-)(1- x,,-) ( l l)  log Zu --- N log 2 ~ log( 1 - + ~ 

which expresses log ZN as a function of the 2 N -  1 independent variables 
x, + instead of the original ones b,, and K,, (notice that xi ~ = x ~  because 
Ko = 0). A similar formula was used by Derrida et al. [see their equation 
(3a), p. 441] to compute exactly the free energy per spin for some specific 
models. But while they run into difficulties in giving a physical meaning to 
the ratios Zn(+ ) / Z , ( -  ), there is a fairly clear equation that relates x, + to 
more physical quantities than the field variables b,*. We proceed as follows. 

Consider the magnetization or average spin value (s , , )  of the nth spin 
( s n ) = O l o g Z u / a b  .. Using (5), (6), (9), and (10) and after a few 
calculations, we get 

n 1 

( s , ) = ( x +  + x ; ) +  Z (x+ + x ; )  f i  ( x + - x p )  (lZa) 
m = l  p = m + l  
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o r  

(s,,) =(x, 7 + x 2 ) +  < s . _ , ) ( x 2  - x 2 )  (12b) 

Differentiating (12b) with respect to bn_ 1 and taking into account (9a), 
one finds 

(As,, ~s,,_ ~ ) = (x 2 - x 2  ) (  (~ s . _  ~)~) (13) 

where we introduced the nearest neighbor correlation (Asn As,_~)= 
~?(s,,)fi?b,,_ l with Asn =s,,-  (s,). Solving (12b) and (13) for x # ,  it is easy 
to see that 

1 (As, As,_i)_) 
x+ = 5  ( (sn)_+ ~ ~-(  s-~_ I (14) 

which establishes our claim. 
Before ending this section, let us apply these exact results to two sim- 

ple examples. First, consider an ideal chain, i.e., Kn = 0, for all n. Formula 
(8) yields b,*=O for all n, while (10) leads to x,~ = x ~ - = ( t a n h  bn)/2; so, 
using (12b) and (13), we get (s,,)=tanhb,, and (AsnAsn_~)=O. Next, 
consider the case b,, = 0 for all n. Again (8) yields b* = 0 for all n, and (10) 
shows that x ~ + = - x ~ - = ( t a n h K , _ l ) / 2 .  Then (12b) and (13) lead to 
(s,,) = 0  and (As,, As,,_ 1 ) =  tanh K,_ 1. Except for these simple cases, the 
exact solution becomes difficult because the field variables b* are highly 
nonlinear in the original variables bn and K.. 

4. THE INVERSE PROBLEM 

In this section we are concerned with the so-called inverse problem, 
which was first solved by Percus for an Ising chain with constant interac- 
tion. In the inverse problem we obtain the external field required to evoke 
a given magnetization profile, that is, we express the sequence bn as a 
function of the average spin values (sn)  and of the coupling constants Kn. 
Once this is done, direct correlation functions (3) are simply obtained as 
derivatives of the external field with respect to the magnetization at various 
spatial points. 

Before proceeding to this task, we derive some preliminary results, 
which will be required subsequently. 

As 

tanh(x - y) = (tanh x - tanh y)/(1 - tanh x tanh y) 
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we get from (10) 

2x 2 - -  t a n h ( 2 K , ,  _ ~) 
2x~-=  f - -  }.~--~+ t a n ~ ; - - 7 )  (15)  

Combining (15) and (12b), one has 

2 ( s n ) = 2 x ~ ( l + ( s , ,  , ) ) +  
2x~ + - tanh(2K~ _,  ) 

1 - 2x,, + tanh(2K,  ,) 
( 1 - ( s , ,  1 ) )  ( 1 6 )  

the correct root  of this second-degree equat ion being found as follows. Let 
( s , )  = 0  for all n in (16). Then we find 

l l + [ 1 - t a n h 2 ( 2 K ~ _ l ) ]  1/2 ~ (2 t anhK, ,  ~) ~ (a) 

x+  2 t a n h ( 2 K . _  1) - {( tanh K,,_ 1)/2 (b) 

Substi tution of these roots in (10) leads to the following consistency 
relations: (a) tanh a Kn_ 1 = 1; (b) tanh 2 K,,_ 1 = 1 or tanh(bn + b,*) = 0. But 
while the condit ion tanh 2 Kn_~ = 1 is untenable on physical grounds, 
tanh(b,, + b * ) =  0 yields b,, = 0 and b,* = 0 for all n as the unique solution. 
This is just the second example reported in Section 3. 

Summarizing, we find from (16) the solution 

1 + ( s~ )  tanh(2K,,_ ~ ) - zl],/2 
x,, + - (17} 

2(1 + (s,, ~ ) )  tanh(2K~_ ~) 

where we have defined 

z~ n = 1 -~ ( (S  n )2 _~ (S n _ 1 )2 -- 1 ) tanh2(2K,, _ l ) 

- - 2 ( s , , ) ( s ~ _ , )  tanh(2K,, l) (18)  

Once we obtain (17) and (18) we are ready to solve the inverse 
problem. Going back to (10), it is easily seen that  

1 1 + 2x + 
b ~ + b *  + K ~ _ ~ = ~ l o g  1 - -~x+  (19)  

and from the recurrence relation (8) we get 

b* = ~ l o g  1 -  4x~-21 
1 - 4 x  ~ 2 (20)  

n + l  
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where we have used the identity c o s h x = ( 1 - t a n h 2 x )  1/2. Combining 
(15), (19), and (20), one has 

1 1 + 2x + ~ [1 - 2x++ l tanh(2K.)] 2 
b , , = ~ l O g l _ 2 x ~  K. , +  log 1-tanh2(2K.) (21) 

The set of equations (21), (17), and (18) establishes the solution of the 
inverse problem. As observed, bn depends on the average spin values 
(sn_l) ,  (sn), and ~s~+l) and on the coupling constants K,_l  and Kn. 
We also note that (21) is valid provided that edge effects are neglected, i.e., 
in the thermodynamic limit. Otherwise, for a finite chain we have 

[1 - 2 x  + tanh(2Kl)] 2 l 1 + ( s , ) +  log 
b I =~ log  1 (s~) l - tanh2(2K~) 

and 

1 1 + 2 x ~  
bN=2 lOg l - - 2 x ~  KN_I 

with x [  and x/~ determined by (17) and (18). 

5. PAIR D I R E C T  C O R R E L A T I O N  F U N C T I O N  

After solving the inverse problem, direct correlation functions are 
obtained systematically by simple differentiation. Let us limit briefly our 
considerations to the pair direct correlation function C(n, m) defined as 

C(n, m) = Ob~/c~( Sm) (22) 

From (17), x, + =x,+((sn),  (S ,_ l ) ,  Kn_l), so, from (22) and (21), we 
have 

2 Ox~ + tanh(2Kn) ~?x"++ ~ (23a) 
C(n, n ) -  1 -4x~ +2 c~(s.) 1 -2x~++ 1 tanh(2K.) c?(s~) 

2 8x + (23b) 
C(n, n -  1 ) -  1 - 4 x 2 2  c?(sn_ 1) 

C(n, n + 1 ) = tanh(2K~) 8x++ 1 (23c) 
1 - 2x++ 1 tanh(2K,,) 8(sn + 1 ) 

and 
C(n, m ) = 0  ( In -ml  > 1) (23d) 
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Therefore,  C(n, m)  has exactly the range of the interactions. Moreover ,  
using (17) and  (18) and after a few calculations, one finds 

tanh(2Kn_ l). C(n, n+ 1)-- 
C(n, n - 1) = 2Al l  2 , 

tanh(2Kn) 
,4 ~/2 
~ n + l  

Hence C(n, n +  1 ) =  C ( n +  1, n), i.e., C(n, n +  1) is symmetr ic  under  per- 
muta t ion  of indices and negative or positive as K ,  > 0 or Kn < 0, respec- 
tively. These findings generalize previous results of Percus. 

NOTE A D D E D  

While these results were being prepared  for publ icat ion a work  by 
Borzi et al. ~81 appeared  containing the same finding as Eq. (23d). 
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